4 research outputs found

    Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    Get PDF
    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe_(49.7)Cr_(17.7)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2.4). The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding

    Shock Wave Attenuation Using Foam Obstacles: Does Geometry Matter?

    No full text
    A shock wave impact study on open and closed cell foam obstacles was completed to assess attenuation effects with respect to different front face geometries of the foam obstacles. Five different types of geometries were investigated, while keeping the mass of the foam obstacle constant. The front face, i.e., the side where the incident shock wave impacts, were cut in geometries with one, two, three or four convergent shapes, and the results were compared to a foam block with a flat front face. Results were obtained by pressure sensors located upstream and downstream of the foam obstacle, in addition to high-speed schlieren photography. Results from the experiments show no significant difference between the five geometries, nor the two types of foam
    corecore